
Sin2x=-1объяснитеподробнее


Ответы на вопрос

Синус какого-то числа равен -1 в нижней точке на единичной окружности
Эта точка = , но синус принимает это значение каждый оборот круга, то есть каждые 2π радиан
Значит все точки, у которых синус -1 это , где n целое число
Тогда , n всё ещё целое число



To solve the equation sin(2x) = -1, we need to find the value(s) of x that satisfy this equation. In other words, we want to find the angle (or angles) whose sine of twice the angle equals -1.
To do this, we can use the properties of the sine function and some trigonometric identities.
Recall that the sine function is periodic, with a period of 2π. This means that for any angle θ, sin(θ) = sin(θ + 2π). Additionally, we know that sin(π) = 0 and sin(3π/2) = -1.
Now, let's focus on the equation sin(2x) = -1. We need to find angles whose double has a sine value of -1.
Step 1: Write the equation in terms of a double angle formula. The double angle formula for sine is: sin(2θ) = 2sin(θ)cos(θ).
Using this formula, we can rewrite the equation as follows: 2sin(x)cos(x) = -1.
Step 2: Find the values of sin(x) and cos(x) that satisfy the equation. Since sin(π) = 0 and sin(3π/2) = -1, we know that sin(x) can be -1 for some value of x.
Now, let's find the corresponding value of cos(x). We can use the Pythagorean identity for the sine and cosine functions, which states: sin^2(θ) + cos^2(θ) = 1.
Since sin(x) = -1, we have: (-1)^2 + cos^2(x) = 1, 1 + cos^2(x) = 1, cos^2(x) = 0.
Taking the square root of both sides, we get: cos(x) = ±√0, cos(x) = 0.
Step 3: Determine the possible values of x. We have found that sin(x) can be -1, and cos(x) can be 0 to satisfy the equation sin(2x) = -1.
Now, let's find the corresponding values of x:
For sin(x) = -1 and cos(x) = 0: x = π/2 + kπ, where k is an integer.
For sin(x) = -1 and cos(x) = 0 (using the negative square root): x = 3π/2 + kπ, where k is an integer.
So, the solutions to the equation sin(2x) = -1 are given by: x = π/2 + kπ, and x = 3π/2 + kπ, where k is an integer.
These are the values of x for which sin(2x) equals -1. There are infinitely many solutions because sine is a periodic function, and for any integer value of k, the angle (π/2 + kπ) and (3π/2 + kπ) will have the same sine value when doubled.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili