
Sin (4x-пі/3)=-1/2 розвязати рівняння


Ответы на вопрос




To solve the equation sin(4x - π/3) = -1/2, we need to find the values of x that satisfy this equation. To do that, we can follow these steps:
Step 1: Find the reference angle The reference angle is the positive acute angle between the terminal side of the angle (4x - π/3) and the x-axis. Since sin is negative in the third and fourth quadrants, we need to find the reference angle in either of these quadrants.
Reference angle = π/6 (30 degrees) [since sin(π/6) = 1/2]
Step 2: Set up the equation for the reference angle In the third quadrant, the angle (4x - π/3) has a reference angle of π/6, and the angle's terminal side is π - (π/6) = 5π/6.
So, we have: 4x - π/3 = 5π/6
Step 3: Solve for x Now, we'll solve for x:
4x = 5π/6 + π/3 4x = 5π/6 + 2π/6 4x = 7π/6
x = (7π/6) / 4 x = 7π/24
Step 4: Check other possible solutions Since sine is a periodic function, there can be other solutions for x within the given interval. The sine function repeats every 2π radians. So, we'll check for additional solutions by adding multiples of 2π:
x = 7π/24 + 2π(n) (where n is an integer)
These are the general solutions for the equation sin(4x - π/3) = -1/2.
If you need a specific numerical value, you can plug in values for n (e.g., n = 0, 1, -1, 2, -2, ...) to get different solutions for x. Remember that the solutions should fall within the desired interval.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili