
Sin x cos x + 2 sin^2 x = cos^2 x


Ответы на вопрос

sinx*cosx+2sin^2x=cos^2x
поделим обе части на cos^2x получим:
tgx+2tg^2x=1
2tg^2x+tgx-1=0
пусть tgx=y
2y^2+y-1=0
D=1-4*2(-1)=9
y=-1
y=1/2
Найдем х:
1)tgx=-1
x=-pi/4+pik . k=z
2)tgx=1/2
x=arctg(1/2)+pik . k=z



To solve the trigonometric equation sin(x)cos(x) + 2sin^2(x) = cos^2(x), we'll use trigonometric identities to simplify the equation. Let's start:
Step 1: Use the identity sin^2(x) + cos^2(x) = 1.
Step 2: Rearrange the equation and substitute sin^2(x) with (1 - cos^2(x)).
The equation becomes: sin(x)cos(x) + 2(1 - cos^2(x)) = cos^2(x).
Step 3: Distribute the 2 on the left side: sin(x)cos(x) + 2 - 2cos^2(x) = cos^2(x).
Step 4: Move all terms to one side to set the equation to zero: sin(x)cos(x) + 2 - 2cos^2(x) - cos^2(x) = 0.
Step 5: Combine the cosine terms on the left side: sin(x)cos(x) - 3cos^2(x) + 2 = 0.
Now we have a quadratic equation in terms of cos(x). To solve this quadratic equation, we can use factoring. However, this particular equation is not easily factorable. Instead, we'll use a substitution to simplify it further:
Let z = cos(x).
Now, the equation becomes: sin(x)z - 3z^2 + 2 = 0.
Step 6: Rearrange the equation to a standard quadratic form: -3z^2 + sin(x)z + 2 = 0.
Step 7: Solve the quadratic equation for z using the quadratic formula: z = [ -sin(x) ± √(sin^2(x) - 4(-3)(2)) ] / (2(-3)).
Simplifying further: z = [ -sin(x) ± √(sin^2(x) + 24) ] / (-6).
So, we have two possible values for z in terms of sin(x).
Step 8: Solve for cos(x) using the values of z: cos(x) = z = [ -sin(x) + √(sin^2(x) + 24) ] / (-6) or cos(x) = z = [ -sin(x) - √(sin^2(x) + 24) ] / (-6).
Now, you have the expressions for cos(x) in terms of sin(x). Unfortunately, the equation does not have a simple, exact solution for x, and you can't isolate x explicitly. Instead, you can use numerical methods to find approximate solutions for specific values of sin(x).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili