
x'+xy=y^3 \ \to \ \frac{C'(y)e^{\frac{y^2}{2} }-yC(y)e^{\frac{y^2}{2} }}{ e^{y^2} } }+\frac{yC(y)}{
e^{\frac{y^2}{2} } }=y^3

Ответы на вопрос

Ответ:
Объяснение:
Извнени что так долго вот все во вложении не благодари




It seems like you are trying to solve a first-order ordinary differential equation (ODE) of the form:
x' + xy = y^3.
To solve this ODE, we can use the method of integrating factors. The integrating factor for this equation is given by e^(y^2/2). Multiplying both sides of the equation by this integrating factor, we get:
e^(y^2/2) * x' + e^(y^2/2) * xy = e^(y^2/2) * y^3.
Now, notice that the left-hand side of the equation can be simplified using the product rule for differentiation:
d/dy(e^(y^2/2) * x) = e^(y^2/2) * x' + (1/2) * y * e^(y^2/2) * x.
So, the equation becomes:
d/dy(e^(y^2/2) * x) = e^(y^2/2) * y^3.
Now, we can integrate both sides with respect to y:
∫ d/dy(e^(y^2/2) * x) dy = ∫ e^(y^2/2) * y^3 dy.
Integrating the left-hand side gives us:
e^(y^2/2) * x = ∫ e^(y^2/2) * y^3 dy.
Now, let's find the integral of the right-hand side. This requires some integration by parts. Let u = y^2 and dv = y * e^(y^2/2) dy.
Then, du = 2y dy and v = e^(y^2/2). The integration by parts formula is given by:
∫ u dv = uv - ∫ v du.
So, we have:
∫ e^(y^2/2) * y^3 dy = ∫ y^2 * e^(y^2/2) dy = y^2 * e^(y^2/2) - ∫ 2y * e^(y^2/2) dy = y^2 * e^(y^2/2) - 2 ∫ y * e^(y^2/2) dy.
Now, we notice that the integral on the right-hand side is just equal to -d/dy(e^(y^2/2)). So, we can write:
∫ e^(y^2/2) * y^3 dy = y^2 * e^(y^2/2) + 2 * e^(y^2/2) + C(y),
where C(y) is an arbitrary constant of integration that may depend on y.
Going back to our original equation, we have:
e^(y^2/2) * x = y^2 * e^(y^2/2) + 2 * e^(y^2/2) + C(y).
Now, we can solve for x:
x = y^2 + 2 + C(y) * e^(-y^2/2).
And there you have the general solution for the given differential equation. C(y) is an arbitrary function of y that depends on the initial conditions of the problem.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili