
(х-у)²+(х-3)²+|2x+y+z|=0


Ответы на вопрос

(х-у)²+(х-3)²+|2x+y+z|=0
слева сумма двух квадратов и модуля
Квадрат и модуль по определению числа всегда большие или равные 0
Значит для того чтобы сумма равнялась 0, надо чтобы каждый член равнялся 0
x-y=0 (1)
x-3=0 (2)
2x+y-z=0 (3)
x=3 из (2)
x=y=3 из (1)
z=2x+y=6+3=9 из (3)
ответ (3 3 9)
Нравится решение - ставь лучший и лайк !!!!!!!!!!!!!!!!!!!!!!!!!!!



To analyze the expression and find the solution, we need to work through the equation step by step. The given equation is:
Here, , , and are variables, and is a constant.
Step 1: Simplify the equation Let's start by expanding the squares and simplifying the expression:
Step 2: Analyze the absolute value term For the equation to be valid, the absolute value term must be non-negative. That is, .
Step 3: Solve for the absolute value term To handle the absolute value, we need to consider two cases: and .
Case 1: In this case, the absolute value term can be replaced with . So, the equation becomes:
Simplifying further:
Step 4: Combine like terms Combine the and terms:
Step 5: Case 1 solution To solve for in terms of , , and , we can use the quadratic formula:
where , , and .
So, the two possible solutions for in case 1 are:
Step 6: Case 2: In this case, the absolute value term becomes . So, the equation becomes:
Simplifying further:
Похожие вопросы
