
Sin(x)+cos(x)+sin(x)*cos(x)=1 x-?


Ответы на вопрос

Ответ:
Объяснение:Возведём обе части уравнения в квадрат,
sinx*sinx+cosx*cosx -2sinx*cosx=1
Первые два слагаемых в сумме дают единицу:
1-2sinx*cosx=1
2sinx*cosx=0
sinx*cosx=0
Теперь, произведение равно 0, когда один из множителей равен 0
Если sin x = 0, то из уравнения получаем cos x = -1
Объяснение:



To find the value of 'x' that satisfies the equation Sin(x) + Cos(x) + Sin(x) * Cos(x) = 1, we can start by manipulating the equation:
Sin(x) + Cos(x) + Sin(x) * Cos(x) = 1
Let's express Sin(x) * Cos(x) as a single term using the trigonometric identity:
Sin(x) * Cos(x) = (1/2) * 2 * Sin(x) * Cos(x) = (1/2) * Sin(2x)
Now the equation becomes:
Sin(x) + Cos(x) + (1/2) * Sin(2x) = 1
To simplify it further, let's express Sin(2x) in terms of Sin(x) and Cos(x) using the double angle formula:
Sin(2x) = 2 * Sin(x) * Cos(x)
Now the equation becomes:
Sin(x) + Cos(x) + (1/2) * (2 * Sin(x) * Cos(x)) = 1
Combine the like terms:
Sin(x) + Cos(x) + Sin(x) * Cos(x) = 1
Now, we have a similar term on both sides of the equation (Sin(x) * Cos(x)). To simplify it even further, we can add Sin(x) * Cos(x) to both sides and then factor out the common term:
Sin(x) + Cos(x) + Sin(x) * Cos(x) + Sin(x) * Cos(x) = 1 + Sin(x) * Cos(x)
2 * Sin(x) * Cos(x) + Sin(x) + Cos(x) = 1 + Sin(x) * Cos(x)
Now, subtract Sin(x) * Cos(x) from both sides:
2 * Sin(x) * Cos(x) + Sin(x) + Cos(x) - Sin(x) * Cos(x) = 1
Combine the terms on the left side:
2 * Sin(x) * Cos(x) + Sin(x) + Cos(x) - Sin(x) * Cos(x) = 1
2 * Sin(x) * Cos(x) - Sin(x) * Cos(x) + Sin(x) + Cos(x) = 1
Sin(x) + Cos(x) = 1
Now, we have a new equation:
Sin(x) + Cos(x) = 1
To solve this equation, we can use the fact that the maximum value of Sin(x) + Cos(x) is √2, and the minimum value is -√2. Since we want the result to be 1, we can set up the equation:
√2 * Sin(x) + √2 * Cos(x) = 1
Now, divide both sides by √2:
Sin(x) + Cos(x) = 1/√2
To find the value of x that satisfies this equation, we can use the unit circle or trigonometric tables. One possible solution for x is:
x = π/4 (45 degrees)
This is because at x = π/4, Sin(x) and Cos(x) are both equal to 1/√2, which satisfies the equation Sin(x) + Cos(x) = 1/√2.
There are multiple solutions to this equation due to the periodic nature of the trigonometric functions. For example, x = 5π/4, x = 9π/4, etc., are also solutions. These are additional angles in the unit circle where Sin(x) + Cos(x) equals 1/√2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili