
Sin 5x + sin 13x = 0 5 sin x -cos 2x +3 =0


Ответы на вопрос

Ответ:
Объяснение:
!!!!!!!!!!!!!!!!!!!!!!!!!





To solve the trigonometric equations, let's solve them one by one:
- Sin(5x) + Sin(13x) = 0
To solve this equation, we'll use the sum-to-product trigonometric identity:
Sin(A) + Sin(B) = 2 * Sin((A + B) / 2) * Cos((A - B) / 2)
So the equation becomes:
2 * Sin((5x + 13x) / 2) * Cos((5x - 13x) / 2) = 0
Now, simplify the equation:
2 * Sin(9x / 2) * Cos(-4x / 2) = 0
Since Sin(0) = 0, the equation reduces to:
Sin(9x / 2) = 0
To find the solutions for x, we need to find all angles θ such that Sin(θ) = 0. These angles are of the form θ = n * π, where n is an integer.
So, we have:
9x / 2 = n * π
Solving for x:
x = (2 * n * π) / 9
where n is an integer.
- 5 * Sin(x) - Cos(2x) + 3 = 0
To solve this equation, we'll use some trigonometric identities:
Cos(2x) = 2 * Cos^2(x) - 1
Substitute this into the original equation:
5 * Sin(x) - (2 * Cos^2(x) - 1) + 3 = 0
Rearrange the equation:
2 * Cos^2(x) - 5 * Sin(x) + 4 = 0
Now, let u = Cos(x), the equation becomes:
2 * u^2 - 5 * Sin(x) + 4 = 0
To solve this quadratic equation for u, we can use the quadratic formula:
u = [ -b ± √(b^2 - 4ac) ] / 2a
where a = 2, b = -5, and c = 4.
Calculate the discriminant (D):
D = b^2 - 4ac D = (-5)^2 - 4 * 2 * 4 D = 25 - 32 D = -7
Since the discriminant is negative, there are no real solutions for u (Cos(x)).
Thus, the equation 5 * Sin(x) - Cos(2x) + 3 = 0 has no real solutions for x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili