Вопрос задан 19.07.2023 в 11:55. Предмет Алгебра. Спрашивает Гейко Анастасия.

ПОЖАЛУЙСТА, РЕШИТЕ УРАВНЕНИЕ: 1+log[2](x+1)=log[2](7x+2)-log[2](x-1) [2] - это основание.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Корнева София.

решение на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения, начнем с преобразования его в более простую форму:

1 + log[2](x + 1) = log[2](7x + 2) - log[2](x - 1)

Используем свойство логарифма: log(a) - log(b) = log(a/b)

1 + log[2](x + 1) = log[2]((7x + 2)/(x - 1))

Теперь уберем логарифм с левой стороны, применяя обратную функцию возведения в степень:

2^(1 + log[2](x + 1)) = 2^log[2]((7x + 2)/(x - 1))

Используем свойство: a^(b+c) = a^b * a^c

2 * 2^log[2](x + 1) = (7x + 2)/(x - 1)

Теперь уберем логарифм с правой стороны, заменяя основание логарифма:

2 * (x + 1) = (7x + 2)/(x - 1)

Раскроем скобки:

2x + 2 = (7x + 2)/(x - 1)

Теперь избавимся от дроби, умножив обе стороны на (x - 1):

2x(x - 1) + 2(x - 1) = 7x + 2

Раскроем скобки и упростим:

2x^2 - 2x + 2x - 2 = 7x + 2

2x^2 - 2 = 7x + 2

Теперь приведем подобные члены на одну сторону:

2x^2 - 7x - 2 - 2 = 0

2x^2 - 7x - 4 = 0

Теперь решим квадратное уравнение. Можно воспользоваться квадратным уравнением или применить факторизацию. Но в данном случае удобнее воспользоваться квадратным уравнением:

x = (-b ± √(b^2 - 4ac)) / 2a

где a = 2, b = -7 и c = -4

x = (7 ± √((-7)^2 - 4 * 2 * -4)) / 2 * 2

x = (7 ± √(49 + 32)) / 4

x = (7 ± √81) / 4

Теперь найдем два возможных значения для x:

  1. x = (7 + √81) / 4 x = (7 + 9) / 4 x = 16 / 4 x = 4

  2. x = (7 - √81) / 4 x = (7 - 9) / 4 x = -2 / 4 x = -0.5

Таким образом, уравнение имеет два решения: x = 4 и x = -0.5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос