Вопрос задан 18.07.2023 в 10:53. Предмет Алгебра. Спрашивает Ревега Тарас.

(1/(x-1))+(3/(|x|+1))>=(1/(|x|-1))

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Николаева Ксения.

(1/(x-1))+(3/(|x|+1))>=(1/(|x|-1))

ОДЗ x≠ 1 x≠-1

1. x>=0

(1/(x-1))+(3/(x+1))>=(1/(x-1))

(3/(x+1))>= 0

для всех x>0 кроме 1

2. x<0

1/(x-1) + 3/(-x+1) >= 1/(-x-1)

2/(1 - x) + 1/(x+1) >= 0

(2x+ 2 + 1-x)/(1-x)(1+x) >=0

(x + 3)/(1-x)(1+x) >=0

(x+3)(x-1)(x+1) <=0

-----------[-3] ++++++++ (-1) ------------ (1) ++++++++++

x ∈ (-∞  -3] U (-1  1)     x<0

x∈ (-∞ -3] U (-1  0)

объединяем с первым

x∈ (-∞ - 3] U (-1  1) U (1 +∞)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality 1x1+3x+11x1\frac{1}{x-1}+\frac{3}{|x|+1}\geq\frac{1}{|x|-1}, we need to consider two cases: one when xx is positive (x>0x>0) and the other when xx is negative (x<0x<0). This is because the absolute value function x|x| behaves differently for positive and negative values of xx.

Case 1: x>0x>0

In this case, the inequality becomes: 1x1+3x+11x1\frac{1}{x-1}+\frac{3}{x+1}\geq\frac{1}{x-1}

Now, we need to find the domain for this inequality. The domain for x>0x>0 is x>0x>0.

Now, we can simplify the inequality:

1x1+3x+11x10\frac{1}{x-1}+\frac{3}{x+1}-\frac{1}{x-1}\geq0

3x+10\frac{3}{x+1}\geq0

Now, since x>0x>0, the denominator x+1x+1 is always positive, so we can multiply both sides of the inequality by x+1x+1 without changing the inequality:

303\geq0

This inequality is always true, which means that for x>0x>0, the original inequality holds true for all values of x>0x>0.

Case 2: x<0x<0

In this case, the inequality becomes: 1x1+3x+11x1\frac{1}{x-1}+\frac{3}{-x+1}\geq\frac{1}{-x-1}

Now, we need to find the domain for this inequality. The domain for x<0x<0 is x<0x<0.

Now, we can simplify the inequality:

1x13x11x1\frac{1}{x-1}-\frac{3}{x-1}\geq\frac{1}{-x-1}

2x11x1-\frac{2}{x-1}\geq\frac{1}{-x-1}

Next, we need to consider two sub-cases:

Sub-case 2.1: 1<x<1-1<x<1

In this sub-case, the denominators x1x-1 and x1-x-1 are both negative, and thus we need to flip the inequality when multiplying or dividing by them:

2x11x1\frac{2}{x-1}\leq-\frac{1}{-x-1}

2x11x+1\frac{2}{x-1}\leq\frac{1}{x+1}

Now, we need to find the domain where both sides of the inequality are positive. For x<0x<0, x+1x+1 is always positive, and for 1<x<1-1<x<1, x1x-1 is negative. Thus, this sub-case has no valid solutions.

Sub-case 2.2: x<1x<-1 or x>1x>1

In this sub-case, both x1x-1 and x1-x-1 are negative, so we don't need to flip the inequality:

2x11x1-\frac{2}{x-1}\geq-\frac{1}{-x-1}

2x11x+1-\frac{2}{x-1}\geq\frac{1}{x+1}

Now, we need to find the domain where both sides of the inequality are negative. For x<0x<0, x1x-1 is negative, and for x<1x<-1 or x>1x>1, x+1x+1 is also negative. Therefore, this sub-case has valid solutions.

However, if we look at the original inequality, we notice that xx cannot be less than or equal to 0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Предметы
Задать вопрос