
Log4×log2×log3(x)≤5


Ответы на вопрос




To solve the inequality log4 × log2 × log3(x) ≤ 5, we need to simplify it step by step.
First, let's apply the properties of logarithms to simplify the expression:
log4 × log2 × log3(x) = (log(x) / log(4)) × (log(x) / log(2)) × (log(x) / log(3))
Next, we can combine the logarithms using the property log(a) + log(b) = log(a * b) to simplify further:
(log(x) / log(4)) × (log(x) / log(2)) × (log(x) / log(3)) = log(x)³ / (log(4) × log(2) × log(3))
Now, we can rewrite the inequality as:
log(x)³ / (log(4) × log(2) × log(3)) ≤ 5
To solve for x, we can isolate log(x)³ on one side:
log(x)³ ≤ 5 × (log(4) × log(2) × log(3))
Now, we can take the cube root of both sides to eliminate the cube:
log(x) ≤ (5 × (log(4) × log(2) × log(3)))^(1/3)
Finally, we can exponentiate both sides using the base 10 to solve for x:
x ≤ 10^[(5 × (log(4) × log(2) × log(3)))^(1/3)]
Please note that calculating the exact numerical value requires substituting the logarithmic values into the equation, which I can't provide without specific logarithmic values. However, you can use a calculator to evaluate the expression and obtain the approximate solution for x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili