
Cos a + ctg a / 1 + sin a


Ответы на вопрос

........................




To simplify the expression cos(a) + cot(a) / (1 + sin(a)), we can start by simplifying the cotangent term using its definition:
cot(a) = 1 / tan(a)
Substituting this back into the expression, we have:
cos(a) + (1 / tan(a)) / (1 + sin(a))
Next, let's simplify the fraction by multiplying the numerator and denominator by tan(a):
cos(a) * tan(a) + 1 / (tan(a) * (1 + sin(a)))
Now, we can simplify the numerator by using the identity:
cos(a) * tan(a) = sin(a)
Substituting this back into the expression, we have:
sin(a) + 1 / (tan(a) * (1 + sin(a)))
Next, we can simplify the denominator by using the identity:
tan(a) = sin(a) / cos(a)
Substituting this into the expression, we have:
sin(a) + 1 / ((sin(a) / cos(a)) * (1 + sin(a)))
Simplifying further, we get:
sin(a) + 1 / (sin(a) * (1 + sin(a)) / cos(a))
To simplify the fraction, we can multiply by the reciprocal of the denominator:
sin(a) + cos(a) / (sin(a) * (1 + sin(a)))
Now, we can multiply out the denominator:
sin(a) + cos(a) / (sin(a) + sin^2(a))
Finally, we can combine the terms in the numerator:
(sin(a) + cos(a)) / (sin(a) + sin^2(a))
So, the simplified expression is:
(sin(a) + cos(a)) / (sin(a) + sin^2(a))


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili