Вопрос задан 15.07.2023 в 16:05. Предмет Алгебра. Спрашивает Кухта Татьяна.

Катеты прямоуголного треугольника относятся 8 : 15,а гипотенуза равна 6.8м.Найдите площадь

треугольника​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петросян Владислав.

Ответ:

9,6 м кв

Объяснение:

Пусть катет 8х и15 х.

По теореме Пифагора х*х*(64+225)=6,8*6,8

х*х*17*17=17*17*0,4*0,4

х=0,4

Площадь равна 8*15*0,4*0,4/2=8*3*0,4=9,6 м кв

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится использовать формулу площади прямоугольного треугольника:

Площадь треугольника = (катет1 * катет2) / 2

Из условия задачи мы знаем, что катеты прямоугольного треугольника относятся как 8 : 15, то есть:

катет1 = 8x катет2 = 15x

Где x - некоторый коэффициент. Мы также знаем, что гипотенуза равна 6.8 метров, то есть:

катет1^2 + катет2^2 = гипотенуза^2 (8x)^2 + (15x)^2 = 6.8^2 64x^2 + 225x^2 = 46.24 289x^2 = 46.24 x^2 = 46.24 / 289 x^2 ≈ 0.16 x ≈ √0.16 x ≈ 0.4

Теперь мы можем найти значения катетов:

катет1 = 8x ≈ 8 * 0.4 = 3.2 м катет2 = 15x ≈ 15 * 0.4 = 6 м

Теперь мы можем найти площадь треугольника:

Площадь треугольника = (катет1 * катет2) / 2 Площадь треугольника ≈ (3.2 * 6) / 2 Площадь треугольника ≈ 19.2 / 2 Площадь треугольника ≈ 9.6 м^2

Площадь треугольника составляет примерно 9.6 квадратных метров.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос