
(-7tgx)''- производная


Ответы на вопрос




To find the second derivative of the function (-7tgx), we'll need to differentiate it twice with respect to x. Let's start by finding the first derivative:
f(x) = -7tgx
Using the chain rule, we can find the first derivative:
f'(x) = (-7)(sec^2x)(1)
Remember that sec^2x is the derivative of tanx.
Now, let's find the second derivative by differentiating f'(x):
f''(x) = [(-7)(sec^2x)]' * (1)
To differentiate (-7)(sec^2x), we'll apply the product rule:
[(-7)(sec^2x)]' = (-7)'(sec^2x) + (-7)(sec^2x)'
The derivative of -7 is 0, so the first term becomes 0.
[(-7)(sec^2x)]' = 0 + (-7)(sec^2x)'
Now, we need to find the derivative of sec^2x:
(sec^2x)' = 2(secx)(secx')(1)
The derivative of secx is secx * tanx. Substituting this in, we get:
(sec^2x)' = 2(secx)(secx * tanx)(1)
Simplifying, we have:
(sec^2x)' = 2sec^2x * tanx
Now, substituting this back into the expression for the second derivative:
f''(x) = [(-7)(sec^2x)]' * (1) = (-7)(sec^2x)' = (-7)(2sec^2x * tanx) = -14sec^2x * tanx
Therefore, the second derivative of the function (-7tgx) is -14sec^2x * tanx.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili