
(0,25)^log0,25(2x-1)=x+5


Ответы на вопрос

Ответ:
Объяснение:
*** Использована формула:



To solve the equation, let's break it down step by step.
The given equation is:
(0.25)^(log0.25(2x-1)) = x + 5
We'll start by simplifying the left side of the equation using the logarithmic property:
log_a(a^b) = b
So, we have:
(0.25)^[(log(2x-1))/(log0.25)] = x + 5
Now, let's simplify further. The logarithm base of 0.25 can be written as -2 (since 0.25 = 1/4 and log_base_4(1/4) = -2).
(0.25)^[log(2x-1)/log(0.25)] = x + 5
Now, rewrite the left side using exponential notation:
4^(-2 * log(2x-1)) = x + 5
Apply the power rule:
1 / (4^(2 * log(2x-1))) = x + 5
To proceed, let's simplify further by using the property:
a^(b * c) = (a^b)^c
[(4^2)^(log(2x-1))]^(-1) = x + 5
[16^(log(2x-1))]^(-1) = x + 5
Now, rewrite the equation in exponential notation:
[2^(4)]^log(2x-1))^(-1) = x + 5
2^([4 * log(2x-1)] * (-1)) = x + 5
Apply the power rule again:
2^(-4 * log(2x-1)) = x + 5
Now, let's simplify further using the logarithmic property:
log_a(a^b) = b
-4 * log(2x-1) = log(2x-1) * (x + 5)
At this point, we have a logarithmic equation. To solve it, we'll divide both sides by log(2x-1):
-4 = x + 5
Now, isolate the variable x:
x = -4 - 5
x = -9
Therefore, the solution to the equation is x = -9.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili