Докажите неравенство (х-2)^2>3у+1
Ответы на вопрос
Ответ: На фотографиии)
Но y найти можно

Для доказательства данного неравенства, нам нужно разбить его на две части:
- Доказать, что неравенство (x-2)^2 > 3y + 1 может выполняться.
- Доказать, что неравенство (x-2)^2 > 3y + 1 не может выполняться.
Приступим к доказательству:
Пусть (x-2)^2 > 3y + 1. Раскроем квадрат на левой стороне неравенства: x^2 - 4x + 4 > 3y + 1 Перенесем все члены на одну сторону неравенства: x^2 - 4x + 3 > 3y Теперь предположим, что у нас есть x и y, которые удовлетворяют этому неравенству. Давайте возьмем x = 0 и y = 0: 0^2 - 4 * 0 + 3 > 3 * 0 3 > 0 Это верное утверждение. Таким образом, неравенство (x-2)^2 > 3y + 1 может выполняться.
Пусть (x-2)^2 > 3y + 1 не выполняется. Это означает, что либо (x-2)^2 < 3y + 1, либо (x-2)^2 = 3y + 1.
a) Предположим, что (x-2)^2 < 3y + 1. Так как квадрат не может быть отрицательным, это неравенство не имеет решений.
b) Предположим, что (x-2)^2 = 3y + 1. Тогда мы получаем равенство, которое может выполняться только в одной точке (x, y). Давайте найдем эту точку: x^2 - 4x + 4 = 3y + 1 x^2 - 4x + 3 = 3y Заметим, что левая сторона - это квадратное уравнение, которое можно факторизовать: (x - 3)(x - 1) = 3y Теперь, чтобы получить целочисленные значения x и y, мы должны рассмотреть все возможные комбинации делителей 3, которые могут равняться y. Но заметим, что для целых x уравнение (x - 3)(x - 1) = 3y не имеет решений. Таким образом, (x-2)^2 = 3y + 1 также не имеет решений.
В результате мы приходим к выводу, что неравенство (x-2)^2 > 3y + 1 может выполняться, но (x-2)^2 = 3y + 1 не может выполняться.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
