
Sin³A+cos³A если sinA+cosA=-0,8


Ответы на вопрос

Надеюсь, всё понятно...




To find the value of sin³A + cos³A, we first need to determine the value of sinA and cosA. We are given that sinA + cosA = -0.8.
Let's use a trigonometric identity to find sin³A + cos³A:
sin³A + cos³A = (sinA)³ + (cosA)³ - 3sinAcosA(sinA + cosA)
We have sinA + cosA = -0.8, so we can rewrite the above equation as:
sin³A + cos³A = (sinA)³ + (cosA)³ - 3sinAcosA(-0.8)
Now, we need to find the values of (sinA)³ and (cosA)³.
Since sinA + cosA = -0.8, we can use the identity: (sinA + cosA)² = sin²A + 2sinAcosA + cos²A = 1
Squaring the given equation:
(-0.8)² = sin²A + 2sinAcosA + cos²A 0.64 = sin²A + 2sinAcosA + cos²A
Now, we know that sin²A + cos²A = 1 (from the identity sin²A + cos²A = 1), so we can rewrite the equation:
0.64 = 1 + 2sinAcosA
Now, we can find sinAcosA:
2sinAcosA = 0.64 - 1 2sinAcosA = -0.36
Next, we need to find (sinA)² and (cosA)²:
(sinA)² + (cosA)² = 1
Since we know (sinA)³ and (cosA)³ appear in the original expression, we can cube the equation above:
(sinA)⁶ + (cosA)⁶ + 2(sinA)³(cosA)³ = 1
Now, we need to find (sinA)⁶ and (cosA)⁶. Let's square the equation sinA + cosA = -0.8 again:
(sinA + cosA)² = (-0.8)² sin²A + 2sinAcosA + cos²A = 0.64
Using the identity sin²A + cos²A = 1:
1 + 2sinAcosA = 0.64
Now, let's square this equation once more:
(1 + 2sinAcosA)² = (0.64)² 1 + 4sinAcosA + 4(sinAcosA)² = 0.4096
We know that 2sinAcosA = -0.36, so let's substitute:
1 - 4(0.36) + 4(sinAcosA)² = 0.4096 1 - 1.44 + 4(sinAcosA)² = 0.4096
Now, let's solve for (sinAcosA)²:
4(sinAcosA)² = 0.4096 - 1 + 1.44 4(sinAcosA)² = 0.8496
(sinAcosA)² = 0.8496 / 4 (sinAcosA)² = 0.2124
Now, we can find sinAcosA:
sinAcosA = ±√0.2124
Since sinA + cosA = -0.8, both sinA and cosA must be negative. Therefore, sinAcosA = -√0.2124.
Now, we can find sin³A + cos³A using the previously derived expression:
sin³A + cos³A = (sinA)³ + (cosA)³ - 3sinAcosA(sinA + cosA)
sin³A + cos³A = (sinA)³ + (cosA)³ - 3sinAcosA(-0.8)
sin³A + cos³A = (sinA)³ + (cosA)³ + 2.4sinAcosA
sin³A + cos³A = (sinA)³ + (cosA)³ + 2.4(-√0.2124)
Now, we need to find the individual values of (sinA)³ and (cosA)³. Let's use the following identity:
(sinA + cosA)³ = sin³A + cos³A + 3sinAcosA(sinA + cosA)
We know that (sinA + cosA)³ = (-0.8)³ = -0.512. Now we can find (sinA)³ + (cosA)³:
(sinA)³ + (cosA)³ = (-0.512 - 3sinAcosA(sinA + cosA)) / -2.4
(sinA)³ + (cosA)³ = (-0.512 - 3(-√0.2124)(-0.8)) / -2.4
(sinA)³ + (cosA)³ = (-0.512 - 3(-√0.2124)(-0.8)) / -2.4
(sinA)³ + (cosA)³ ≈ -0.299
Finally, we can find sin³A + cos³A:
sin³A + cos³A ≈ -0.299 + 2.4(-√0.2124)
sin³A + cos³A ≈ -0.299 - 2.4√0.2124
sin³A + cos³A ≈ -0.299 - 1.472
sin³A + cos³A ≈ -1.771
So, sin³A + cos³A ≈ -1.771.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili