
Найти sin^4x-cos^4x, если -45° < x < 45° и cosx-sinx=(√0.72)


Ответы на вопрос

Ответ:-0,96
Объяснение:




To find the value of sin^4x - cos^4x, we first need to determine the values of sin(x) and cos(x) using the given equation cos(x) - sin(x) = √0.72.
We can start by squaring both sides of the given equation:
(cos(x) - sin(x))^2 = (√0.72)^2 cos^2(x) - 2*cos(x)*sin(x) + sin^2(x) = 0.72
Using the trigonometric identity cos^2(x) + sin^2(x) = 1, we can rewrite the equation as:
1 - 2*cos(x)*sin(x) = 0.72
Now, let's solve for cos(x)*sin(x):
2*cos(x)sin(x) = 1 - 0.72 2cos(x)*sin(x) = 0.28 cos(x)*sin(x) = 0.28 / 2 cos(x)*sin(x) = 0.14
Now, let's square both sides of the equation:
(cos(x)*sin(x))^2 = (0.14)^2 cos^2(x)*sin^2(x) = 0.0196
Next, we can use the Pythagorean identity sin^2(x) = 1 - cos^2(x) to express sin^2(x) in terms of cos^2(x):
sin^2(x) = 1 - cos^2(x)
Now, substitute sin^2(x) in the equation:
(1 - cos^2(x)) * cos^2(x) = 0.0196
Expand the equation:
cos^2(x) - cos^4(x) = 0.0196
Now, we need to find sin^4(x), and we can use the Pythagorean identity again to express sin^2(x) in terms of cos^2(x):
sin^2(x) = 1 - cos^2(x)
Substitute sin^2(x) in the equation:
sin^4(x) = (1 - cos^2(x))^2 sin^4(x) = (1 - cos^2(x)) * (1 - cos^2(x)) sin^4(x) = 1 - 2*cos^2(x) + cos^4(x)
Now, we can substitute the expression we found earlier for cos^2(x):
sin^4(x) = 1 - 2*(cos^2(x) - cos^4(x)) + cos^4(x) sin^4(x) = 1 - 2cos^2(x) + 2cos^4(x)
Finally, we can substitute the value of cos(x)*sin(x) we found earlier:
cos(x)*sin(x) = 0.14
sin^4(x) - cos^4(x) = 1 - 2cos^2(x) + 2cos^4(x) - cos^4(x)
sin^4(x) - cos^4(x) = 1 - 2*cos^2(x) + cos^4(x)
Now, we still need to find the value of cos^2(x). We can use the original equation cos(x) - sin(x) = √0.72 to get cos^2(x):
cos(x) - sin(x) = √0.72
Square both sides:
cos^2(x) - 2*cos(x)*sin(x) + sin^2(x) = 0.72
Since sin^2(x) = 1 - cos^2(x):
cos^2(x) - 2*cos(x)*sin(x) + (1 - cos^2(x)) = 0.72
Now, substitute cos(x)*sin(x) = 0.14:
cos^2(x) - 2*0.14 + (1 - cos^2(x)) = 0.72
Simplify the equation:
cos^2(x) - 0.28 + 1 - cos^2(x) = 0.72
Combine like terms:
1 - 0.28 = 0.72
0.72 = 0.72
Since the equation is true, the given value of cos(x) - sin(x) = √0.72 is valid.
Now, let's return to the expression for sin^4(x) - cos^4(x):
sin^4(x) - cos^4(x) = 1 - 2*cos^2(x) + cos^4(x)
Since we have already determined that cos(x) - sin(x) = √0.72, we can substitute cos^2(x) = 0.72 into the equation:
sin^4(x) - cos^4(x) = 1 - 2*0.72 + 0.72^2
Calculate the values:
sin^4(x) - cos^4(x) = 1 - 2*0.72 + 0.5184
sin^4(x) - cos^4(x) = 1 - 1.44 + 0.5184
sin^4(x) - cos^4(x) = 0.5184 - 0.44
sin^4(x) - cos^4(x) = 0.0784
Therefore, sin^4(x) - cos^4(x) = 0.0784 when -45° < x < 45° and cos(x) - sin(x) = √0.72.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili