
(x^-1)(x^+3)=(x^+1)+ xрешить


Ответы на вопрос

Ответ:
х= -4
Объяснение:
(x²-1)(x²+3)=(x²+1)²+x
х⁴+3х²-х²-3=х⁴+2х+1+х
х⁴+2х²-х⁴-2х²-х=1+3
-х=4
х= -4



To solve the equation (x^-1)(x^+3) = (x^+1) + x, let's follow these steps:
Step 1: Simplify the left-hand side (LHS) of the equation. Step 2: Expand the right-hand side (RHS) of the equation. Step 3: Combine like terms. Step 4: Move all the x terms to one side of the equation. Step 5: Factor out x from the resulting equation. Step 6: Solve for x.
Let's get started:
Step 1: Simplify the LHS: (x^-1)(x^+3) = (1/x)(x+3) = (x+3)/x
Step 2: Expand the RHS: (x^+1) + x = x + 1 + x = 2x + 1
Step 3: Combine like terms: (x+3)/x = 2x + 1
Step 4: Move all the x terms to one side: (x+3)/x - 2x = 1
Step 5: Factor out x: [(x+3) - 2x^2] / x = 1
Step 6: Solve for x: Multiply both sides by x to eliminate the fraction: (x + 3) - 2x^2 = x
Now, let's move all terms to one side and set the equation to zero: 2x^2 + x - (x + 3) = 0
Simplify: 2x^2 + x - x - 3 = 0 2x^2 - 3 = 0
Now, we have a quadratic equation in the form of ax^2 + bx + c = 0, where a = 2, b = 0, and c = -3. To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / 2a
Substitute the values: x = (0 ± √(0^2 - 42(-3))) / 2*2 x = (±√(24)) / 4
Now, we have two potential solutions for x:
- x = (√24) / 4 ≈ 0.866
- x = -(√24) / 4 ≈ -0.866
So, the solutions for the equation are approximately x ≈ 0.866 and x ≈ -0.866.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili