
Cos(3x)*cos(6x)=cos(4x)*cos(7x) на промежутке [Pi/3;Pi/2]


Ответы на вопрос

При m = 10 корни совпадают поэтому мы оставляем меньший из них:
Отберем корни на даном отрезке:



To solve the equation cos(3x) * cos(6x) = cos(4x) * cos(7x) on the interval [π/3, π/2], we can use trigonometric identities to simplify the equation and then solve for x.
First, let's rewrite the equation using the cosine addition formula: cos(3x) * [cos(6x) + cos(4x)] = 0
Using the identity cos(A) + cos(B) = 2 * cos((A + B) / 2) * cos((A - B) / 2), we can rewrite the equation as: cos(3x) * [2 * cos((6x + 4x) / 2) * cos((6x - 4x) / 2)] = 0
Simplifying further: cos(3x) * [2 * cos(5x) * cos(x)] = 0
Now, we have two factors: cos(3x) = 0 and cos(5x) * cos(x) = 0.
Let's solve them one by one:
- cos(3x) = 0: To find the values of x for which cos(3x) = 0, we need to solve the equation: 3x = π/2 + k * π (where k is an integer)
Solving for x: x = (π/2 + k * π) / 3 (where k is an integer)
Since we are interested in the interval [π/3, π/2], let's find the values of k that satisfy this interval:
For k = 0: x = π/6
For k = 1: x = (π/2 + π) / 3 = π/6 + π/3 = π/2
Therefore, the values of x for cos(3x) = 0 in the given interval are x = π/6 and x = π/2.
- cos(5x) * cos(x) = 0: To find the values of x for which cos(5x) * cos(x) = 0, we need to solve the equations: cos(5x) = 0 or cos(x) = 0
For cos(5x) = 0: 5x = π/2 + k * π (where k is an integer)
Solving for x: x = (π/2 + k * π) / 5 (where k is an integer)
For cos(x) = 0: x = π/2 + k * π/2 (where k is an integer)
Again, let's find the values of k that satisfy the interval [π/3, π/2]:
For cos(5x) = 0: For k = 1: x = (π/2 + π) / 5 = π/10 + π/5 = 3π/10
For k = 2: x = (π/2 + 2π) / 5 = π/10 + 2π/5 = 7π/10
For k = 3: x = (π/2 + 3π) / 5 = π/10 + 3π/5 = 11π/10 (outside the given interval)
For cos(x) = 0: For k = 1: x = π/2 + π/2 = π
Therefore, the values of x for cos(5x) * cos(x) = 0 in the given interval are x = π/10, 3π/10, and π.
In summary, the solutions for the equation cos(3x) * cos(6x) = cos(4x) * cos(7x) on the interval [π/3, π/2] are: x = π/6, π/2, π/10, 3π/10, and π.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili