Вопрос задан 08.07.2023 в 19:50. Предмет Алгебра. Спрашивает Савицкая Алина.

Скільки коренів має рівняння : 3(х+8)=х(х+3). Ответы : А) Два, Б) Один, В) Жодного корення, Г)

Безліч коренів. С РЕШЕНИЕМ. ПЖ СРОЧНО
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ramazanova Maj.

Ответ:

Объяснение:

Раскроем скобки

3x + 24 = x^2 + 3

x^2 + 3 - 3x - 24 =0

x^2 - 3x - 21 = 0

D = 9 + 4* 21 >0 , значит имеет 2 корня

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте спробуємо розв'язати рівняння 3(x+8) = x(x+3) і визначити, скільки коренів воно має.

Розкриємо дужки: 3x + 24 = x^2 + 3x.

Перенесемо всі члени рівняння на одну сторону: x^2 - 3x - 3x - 24 = 0.

Скоротимо подібні доданки: x^2 - 6x - 24 = 0.

Тепер нам потрібно розв'язати це квадратне рівняння. Щоб знайти корені, ми можемо скористатися формулою квадратного кореня:

x = (-b ± √(b^2 - 4ac)) / (2a),

де a, b і c - коефіцієнти рівняння.

У нашому випадку a = 1, b = -6 і c = -24. Підставимо ці значення у формулу:

x = (-(-6) ± √((-6)^2 - 4(1)(-24))) / (2(1)),

x = (6 ± √(36 + 96)) / 2,

x = (6 ± √132) / 2.

Тепер розкладемо 132 на множники, щоб спростити корені:

132 = 2 * 2 * 3 * 11.

√132 = √(2 * 2 * 3 * 11) = 2√(3 * 11) = 2√33.

Тепер можемо підставити це значення у рівняння:

x = (6 ± 2√33) / 2.

Скоротимо на 2:

x = 3 ± √33.

Отже, рівняння має два корені: x = 3 + √33 і x = 3 - √33.

Відповідь: А) Два корені.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос