
Решить систему: x+y^2=z^3; x^2+y^3=z^4; x^3+y^4=z^5 и хотя бы немного пояснить


Ответы на вопрос

Ответ:
(0;0;0) , (0;1;1) , (1;0;1) , (-1; 0; -1) , (-1;-1;0) , ( (1+√5)/2; (1+√5)/2; (1+√5)/2 ) ,
( (1-√5)/2; (1-√5)/2; (1-√5)/2 )
Объяснение:
x+y^2=z^3
x^2+y^3=z^4
x^3+y^4 =z^5
Заметим, что :
(x+y^2)*(x^3+y^4) = (x^2+y^3)^2
x^4 +x*y^4 +y^2*x^3 +y^6 = x^4 +2*x^2*y^3 +y^6
x*y^4 +y^2*x^3 - 2*x^2*y^3 = 0
x*y^2 *(y^2 -2*x*y +x^2) = 0
x*y^2*(y-x)^2 = 0
1) x=0
y^2=z^3
y^3=z^4
Рассмотрим сначала нулевое решение y=z=0 , теперь можно поделить второе уравнение на первое, предполагая , что z≠0 и y≠0 :
y=z → z^2=z^3 → z^2*(1-z)=0 → z=y=1
2) y = 0
x=z^3
x^2=z^4
Рассмотрим сначала нулевое решение x=z=0 , теперь можно поделить второе уравнение на первое, предполагая , что z≠0 и x≠0
z=x → z=z^3 → z(1-z^2) =0 → z*(1-z)*(1+z) = 0 → z=x=1; z=x=-1
3) x=y
x+x^2 =z^3
x^2+x^3 =z^4
Проверим случай, когда :
x+x^2 = 0
x*(x+1) = 0 → x=y=z=0 ; x=y=-1 ; z=0
Теперь можно не боясь за потерю решений поделить второе уравнение на первое :
x=z
x+x^2 = x^3
x*(x^2-x-1) = 0
x=y=z=0
А вот одно весьма неожиданное и интересное решение .
x^2-x-1=0
D= 1+4=5
x= (1+-√5)/2
x=y=z = (1+-√5)/2
Таким образом можно записать ответ : (x,y,z)
(0;0;0) , (0;1;1) , (1;0;1) , (-1; 0; -1) , (-1;-1;0) , ( (1+√5)/2; (1+√5)/2; (1+√5)/2 ) ,
( (1-√5)/2; (1-√5)/2; (1-√5)/2 )



Решить данную систему уравнений можно методом последовательного исключения переменных. У нас есть три уравнения:
Давайте начнем с исключения из первого и второго уравнений. Выразим из первого уравнения:
Подставим это выражение во второе уравнение:
Теперь у нас есть уравнение, содержащее только и . Мы можем решить его относительно . Сначала упростим уравнение:
Раскроем квадрат:
Теперь перенесем все члены на одну сторону:
Теперь у нас есть уравнение вида:
Это уравнение, возможно, не имеет аналитического решения для , , и , и его решение может потребовать численных методов или приближенных методов. Мы можем попытаться решить его численно, используя компьютерное программное обеспечение для символьных вычислений.
Однако даже если найдем решения для , , и , нам нужно будет убедиться, что они удовлетворяют всей системе из трех уравнений. Это может быть сложной задачей, и решение может иметь много комплексных корней.
Таким образом, данная система уравнений представляет собой сложную математическую задачу, и ее решение может потребовать специализированных методов и вычислительных ресурсов.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili