Вопрос задан 04.07.2023 в 22:43. Предмет Алгебра. Спрашивает Shahbazyan Arsen.

A3+2a^2/a^2-1*(a^4)^3(a-1)/a^2(a+2) Помогите пожалуйста

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жируха Анастасия.

Ответ:

все на фотографииииииаивив


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу разложить данное выражение на более простые составляющие и упростить его.

Исходное выражение:

A * (3 + 2a^2) / (a^2 - 1) * (a^4)^3 * (a - 1) / (a^2 * (a + 2))

Давайте начнем с упрощения:

  1. Раскроем степень (a^4)^3: (a^4)^3 = a^(4 * 3) = a^12

  2. Упростим дроби с одинаковыми основаниями степеней: a^2 / a^2 = 1

  3. Раскроем скобки в числителе и знаменателе:

Числитель: A * (3 + 2a^2) * a^12 * (a - 1)

Знаменатель: (a^2 - 1) * a^2 * (a + 2)

  1. Раскроем скобки и объединим степени:

Числитель: 3a^12A + 2a^14A - a^12A

Знаменатель: a^4 - a^2 + 2a^2

  1. Сгруппируем члены в числителе:

3a^12A + 2a^14A - a^12A = 2a^12A + 2a^14A

Теперь мы имеем:

Числитель: 2a^12A + 2a^14A Знаменатель: a^4 + a^2

Итак, упрощенное выражение:

(2a^12A + 2a^14A) / (a^4 + a^2)

Это упрощенное выражение не может быть дополнительно упрощено без конкретных числовых значений для переменных A и a.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос