
Докажите (индукцией), что где a₁, a₂, ..., aₙ -- положительные действительные числа. Указание.
Для перехода от n к (n + 1) докажите, что из предполодения об истинности формулы для n следует истинность её для 2n и для (n - 1). Для перехода от n к (n - 1) найдите число x такое, что

Ответы на вопрос

Ответ:
Объяснение:
При n=1 верность неравенства очевидна.
При n=2, получаем известное верное неравенство, оно нам понадобится.
Теперь докажем, что из верности неравенство верно для n=m, следует его верность для n=2m.
В самом деле, пусть неравенство верно для n=m. Нам нужно доказать, что тогда верно и неравенство
Так как неравенство верно для n=m (по индуктивному предположению), можем записать такие два неравенства:
Но использовав неравенство для n=2 получаем:
Тогда и подавно
А теперь, следуя за Коши (который как раз первым доказал это неравенство), заметим, что из доказанного выше следует, что если неравенство верно для (где k - натуральное), то оно верно и для
. Действительно, чтобы доказать это, достаточно положить
, тогда
и неравенство также верно. А так как неравенство верно для n=2, то по индукции отсюда получаем верность неравенства для всех остальных степеней двойки, то есть для чисел вида
при любом натуральном
. Это утверждение назовём Леммой 1.
Осталось доказать, что из верности неравенства для n=k, следует его верность для n=k-1. Это будет наша Лемма 2.
Ну что же, раз в задании дана такая превосходная подсказка - воспользуемся ей. Найдём такой x, о котором идёт речь в задании. Он выражается из данной в условии формулы очевидным образом, не буду на этом останавливаться:
Теперь пусть неравенство верно для произвольного n=k.
Применим это неравенство к числам :
Что получится в левой части мы знаем - среднее арифметическое чисел . Далее возводим неравенство в степень k и преобразовываем:
Получили как раз неравенство для n=k-1.
Собственно, неравенство можно считать доказанным. Лемма 1 и Лемма 2 решают вопрос для любого n. В самом деле, возьмём произвольное натуральное n. Очевидно, найдётся такое натуральное , что
. Неравенство верно для этой степени двойки (Лемма 1). Но оно верно также и для всех натуральных чисел меньших её, это по индукции следует из Леммы 2. Тогда неравенство верно и для нашего произвольно выбранного n.



Кажется, вы начали формулировку математической задачи, но она была обрезана. Пожалуйста, предоставьте полный текст задачи, чтобы я мог понять, какую именно формулу вы хотите доказать индукцией, и какие условия даны. Как только я получу полный текст задачи, я буду рад помочь вам с доказательством.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili