Вопрос задан 03.07.2023 в 23:55. Предмет Алгебра. Спрашивает Прокудин Егор.

Сократите дробь 81x²-100y²/5y-5x​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Sabievna Gulba.
А она не сокращается. Может неправильно написала? Скинь, я сделаю
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для сокращения данной дроби, сначала выведем общий множитель из числителя и знаменателя. Заметим, что числитель является разностью квадратов, поэтому мы можем воспользоваться формулой разности квадратов:

81x2100y2=(9x)2(10y)2=(9x+10y)(9x10y)81x^2 - 100y^2 = (9x)^2 - (10y)^2 = (9x + 10y)(9x - 10y)

Теперь, применяя эту факторизацию, можно сократить дробь:

81x2100y25y5x=(9x+10y)(9x10y)5(yx)\frac{81x^2 - 100y^2}{5y - 5x} = \frac{(9x + 10y)(9x - 10y)}{5(y - x)}

Таким образом, сокращенная форма данной дроби будет (9x+10y)(9x10y)/(5(yx))(9x + 10y)(9x - 10y)/(5(y - x)).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос