Вопрос задан 03.07.2023 в 20:10. Предмет Алгебра. Спрашивает Ткаченко Даня.

Степень с натуральным показателем и ее свойства. Урок 2 Выполни возведение в (4b/5)^3​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ким Костян.

Ответ:

4b^3+3*4b*5+5^3=64b^3+60b+125

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы выполнить возведение в степень с натуральным показателем, нужно умножить базу степени на себя столько раз, сколько указано в показателе степени.

Давайте рассмотрим ваш пример:

Выражение, которое нужно возвести в степень, имеет вид: (4b5)3\left(\frac{4b}{5}\right)^3.

Чтобы выполнить возведение в степень, умножим данное выражение на себя три раза:

(4b5)3=4b54b54b5\left(\frac{4b}{5}\right)^3 = \frac{4b}{5} \cdot \frac{4b}{5} \cdot \frac{4b}{5}.

Для удобства вычислений можно раскрыть числитель и знаменатель каждой дроби:

4b54b54b5=444bbb555\frac{4b}{5} \cdot \frac{4b}{5} \cdot \frac{4b}{5} = \frac{4 \cdot 4 \cdot 4 \cdot b \cdot b \cdot b}{5 \cdot 5 \cdot 5}.

Упростим числитель и знаменатель:

64b3125\frac{64b^3}{125}.

Итак, (4b5)3\left(\frac{4b}{5}\right)^3 равно 64b3125\frac{64b^3}{125}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос