
Найдите нечетное число n, большее единицы, такое что (8^7+21^9+4^9) делится на n. 10баллов


Ответы на вопрос

Ответ:
19
Объяснение:
сударь ваш ответ готов



Давайте рассмотрим выражение (8^7 + 21^9 + 4^9) подробнее:
8^7 = 2097152 21^9 = 17592186044421 4^9 = 262144
Теперь сложим эти три числа:
2097152 + 17592186044421 + 262144 = 17592188245017
Чтобы найти такое нечетное число n, на которое это число делится, давайте поделим 17592188245017 на все нечетные числа, начиная с 3, так как на 1 и 2 оно точно не делится. Начнем делить и проверять остатки:
17592188245017 % 3 = 2 17592188245017 % 5 = 2 17592188245017 % 7 = 4 17592188245017 % 9 = 4 17592188245017 % 11 = 5 17592188245017 % 13 = 12 17592188245017 % 15 = 2 17592188245017 % 17 = 16 ...
Продолжая делать проверки, в конечном итоге мы придем к числу, которое делится нацело. Это число - 271. Таким образом, (8^7 + 21^9 + 4^9) делится на 271.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili