Вопрос задан 01.07.2023 в 22:58. Предмет Алгебра. Спрашивает Самусенко Дима.

Решите неравенство: 2cosx+1<0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Суркова Виктория.

Ответ:

Объяснение:

///////////////////////////////////////////////


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить неравенство 2cos(x) + 1 < 0, сначала вычтем 1 из обеих сторон:

2cos(x) < -1

Затем разделим обе части на 2:

cos(x) < -1/2

Теперь рассмотрим интервалы, на которых косинус отрицателен или равен -1/2. Косинус отрицателен на интервалах (π/2, 3π/2), и косинус равен -1/2 в точках π/3 и 5π/3.

Таким образом, решением неравенства являются интервалы:

(π/2, π/3) ∪ (5π/3, 3π/2)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос