
Вопрос задан 30.06.2023 в 23:23.
Предмет Алгебра.
Спрашивает Черноусова Яна.
3у-квадрат-8у+4=0а=3,в=-8,с=4


Ответы на вопрос

Отвечает Ляшко Даша.
Ответ:
x1=2
x2=2/3
Объяснение:
3y²-8y+4=0
D=(-8)²-4×3×4=64-48=16
x1=8+4/6=2 x2=8-4/6=2/3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the equation 3у² - 8у + 4 = 0 with the given values of a = 3, b = -8, and c = 4, we can use the quadratic formula. The quadratic formula states that for an equation of the form ax² + bx + c = 0, the solutions for x can be found using the formula:
x = (-b ± √(b² - 4ac)) / (2a)
Substituting the given values into the quadratic formula, we have:
у = (-(-8) ± √((-8)² - 4 * 3 * 4)) / (2 * 3)
Simplifying further:
у = (8 ± √(64 - 48)) / 6 у = (8 ± √16) / 6 у = (8 ± 4) / 6
Now, we can calculate the two possible values of у:
у₁ = (8 + 4) / 6 = 12 / 6 = 2 у₂ = (8 - 4) / 6 = 4 / 6 = 2/3
Therefore, the solutions to the equation 3у² - 8у + 4 = 0 are у = 2 and у = 2/3.


Похожие вопросы

Алгебра 47
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili