
(2x-1)(2x+1)>2(X+0.5)2


Ответы на вопрос

Ответ: 3/2>0
Объяснение:
(2x+1)(2x-1)>2*(x+0.5)^2
4x^2-1>2*(x^2+x+0.25)
4x^2-1>2x^2+2x+0.5
2x^2-2x-1.5>0
В=(-2)^2-4*2*(-1.5)=4+12=16
x1=3/2
x2=-1/2



To solve the inequality (2x-1)(2x+1) > 2(x+0.5)^2, you can follow these steps:
Expand both sides of the inequality: (2x-1)(2x+1) > 2(x+0.5)^2
Simplify: (4x^2 - 1) > 2(x^2 + x + 0.25)
Distribute the 2 on the right side: 4x^2 - 1 > 2x^2 + 2x + 0.5
Move all terms to the left side of the inequality to set it to zero: 4x^2 - 2x^2 - 2x - 1 - 0.5 > 0
Combine like terms: 2x^2 - 2x - 1.5 > 0
Now, we want to find the values of x that make this quadratic inequality true. You can use a sign chart or factor the quadratic to find the critical points. Factoring is a bit tricky in this case, so let's use a sign chart:
a. Find the critical points by setting the expression inside the inequality to zero: 2x^2 - 2x - 1.5 = 0
b. Solve for x: 2x^2 - 2x - 1.5 = 0 x^2 - x - 0.75 = 0
You can factor the quadratic: (x - 1.5)(x + 0.5) = 0
Set each factor equal to zero and solve for x: x - 1.5 = 0 => x = 1.5 x + 0.5 = 0 => x = -0.5
So, the critical points are x = 1.5 and x = -0.5.
c. Create a sign chart for the inequality: We have three intervals to consider: (-∞, -0.5), (-0.5, 1.5), and (1.5, ∞).
Test a value in each interval: For x < -0.5, you can use x = -1. For -0.5 < x < 1.5, you can use x = 0. For x > 1.5, you can use x = 2.
Plug these values into the inequality: -1: 2(-1)^2 - 2(-1) - 1.5 > 0 0: 2(0)^2 - 2(0) - 1.5 > 0 2: 2(2)^2 - 2(2) - 1.5 > 0
d. Analyze the sign chart: In the interval (-∞, -0.5), the expression is positive. In the interval (-0.5, 1.5), the expression is negative. In the interval (1.5, ∞), the expression is positive.
Determine the solution: The inequality (2x-1)(2x+1) > 2(x+0.5)^2 is satisfied in the intervals where the expression is positive. So, the solution is:
x < -0.5 or x > 1.5
Therefore, the solution to the inequality is the set of real numbers x that are less than -0.5 or greater than 1.5.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili