Вопрос задан 26.06.2023 в 20:07. Предмет Алгебра. Спрашивает Кулахмет Рахым.

Случайная величина ξ принимает значения −1, 0 и 1 с вероятностями, соответственно равными 14, 12 и

14. Тогда выражение функции распределения величины ξ задается следующим образом пжжж
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Комарских Максим.

Відповідь:

Пояснення:

Если 14, 12, 14 частоти появления -1, 0 и 1 соответственно, то Р{х=-1}=14/40=7/20, Р{х=0}=6/20, Р{х=11}=7/20

Тогда функция распределения F(x)=

0, если х<-1

7/20, если х<0

7/20+6/20=13/20 , если х<1

1, если х>=1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Функция распределения (или кумулятивная функция распределения) случайной величины ξ обычно обозначается как F(ξ) и определяется для любого x как:

F(x)=P(ξx)F(x) = P(\xi \leq x)

В вашем случае, где ξ принимает значения -1, 0 и 1 с вероятностями 1/4, 1/2 и 1/4 соответственно, функция распределения будет выглядеть следующим образом:

0, & x < -1 \\ 1/4, & -1 \leq x < 0 \\ 3/4, & 0 \leq x < 1 \\ 1, & x \geq 1 \end{cases}\] Иначе говоря, это значит, что вероятность того, что случайная величина ξ примет значение меньше -1, равна 0. Вероятность того, что ξ будет равна -1 или меньше, но больше -1, равна 1/4, и так далее.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос