
(х-3)²+(x+4)²-(x-5)²=17x +24


Ответы на вопрос





To solve the equation , you can start by expanding and simplifying the left side of the equation, and then solving for .
Here's the expanded form:
Expanding the squares:
Now, simplify and combine like terms:
Now, distribute the negative sign in front of the third term on the left side:
Simplify further:
Combine like terms:
Now, simplify the equation:
Now, solve for :
So, the solution to the equation is .



To solve this equation, you can start by expanding and simplifying the expressions on both sides:
(х-3)² + (x+4)² - (x-5)² = 17x + 24
First, expand the squares:
(x² - 6x + 9) + (x² + 8x + 16) - (x² - 10x + 25) = 17x + 24
Now, simplify further by combining like terms:
x² - 6x + 9 + x² + 8x + 16 - x² + 10x - 25 = 17x + 24
Now, simplify the equation:
x² - 6x + 9 + x² + 8x + 16 - x² + 10x - 25 - 17x - 24 = 0
Now, combine like terms again:
2x² - 6x + 9 + 8x - 10x - 25 - 17x - 24 = 0
Now, combine like terms:
2x² - 25x - 40 = 0
Now, you have a quadratic equation in the form ax² + bx + c = 0, where a = 2, b = -25, and c = -40. You can solve this quadratic equation using the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
Plugging in the values:
x = (-(-25) ± √((-25)² - 4(2)(-40))) / (2(2))
x = (25 ± √(625 + 320)) / 4
x = (25 ± √945) / 4
Now, you can simplify further:
x = (25 ± 3√105) / 4
So, the solutions to the equation are:
x = (25 + 3√105) / 4 and x = (25 - 3√105) / 4


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili