
1)x^4-5x^2-6=0 2)4x^4-5x^2+1=0 3)x^4-9x^2+20=0 4)16y^4+145y^2+9=0 5)12y4-7y^2+1=0


Ответы на вопрос

1) x⁴-5x²-6=0
t²-5t-6=0
t= -1
t=6
x²= -1
x²=6
x€/R
x= -√6
x=√6
x1= -6, x2=√6.
2)4x⁴-5x²+1=0
4t²-5t+1=0
t=1/4
t=1
x²=1/4
x²=1
x= -1/2
x=1/2
x= -1
x=1
x1= -1, x2= -1/2, x3=1/2, x4=1.
3) x⁴-9x+20=0
t²-9t+20=0
t=4
t=5
x²=4
x²=5
x= -2
x=2
x= -√5
x=√5
x1= -√5, x2= -2, x3=2, x4=√5.
4)16y⁴+145y²+9=0
y= €/R.
5) 12y4-7y²+1=0
48y-7y²+1=0
-7y²+48y+1=0
7y²-48y-1=0
y= -(-48)±√(-48)²-4×7×(-1)/2×7
y=48±√2304+28/14
y=48±2332/14
y=48+2√583/14
y=48-2√583/14
y=24+√583/7
y=24-√583/7
y1=24-√583/7, x2=24+√583/7.



To solve these equations, we'll use substitution to simplify them. Let's tackle each equation one by one:
- x^4 - 5x^2 - 6 = 0
Let's use substitution. Let y = x^2. Then the equation becomes:
y^2 - 5y - 6 = 0
Now, we can factor this quadratic equation:
(y - 6)(y + 1) = 0
So, either y - 6 = 0 or y + 1 = 0:
- y - 6 = 0 => y = 6
- y + 1 = 0 => y = -1
Now, we need to substitute back for y:
- x^2 = 6 => x = ±√6
- x^2 = -1 (No real solutions, as the square of a real number cannot be -1)
Therefore, the real solutions to the equation are x = √6 and x = -√6.
- 4x^4 - 5x^2 + 1 = 0
Let's use substitution again. Let y = x^2. Then the equation becomes:
4y^2 - 5y + 1 = 0
Now, we can factor this quadratic equation:
(4y - 1)(y - 1) = 0
So, either 4y - 1 = 0 or y - 1 = 0:
- 4y - 1 = 0 => 4y = 1 => y = 1/4
- y - 1 = 0 => y = 1
Now, we need to substitute back for y:
- x^2 = 1/4 => x = ±(1/2)
- x^2 = 1 => x = ±1
Therefore, the real solutions to the equation are x = 1/2, x = -1/2, x = 1, and x = -1.
- x^4 - 9x^2 + 20 = 0
Let's use substitution again. Let y = x^2. Then the equation becomes:
y^2 - 9y + 20 = 0
Now, we can factor this quadratic equation:
(y - 5)(y - 4) = 0
So, either y - 5 = 0 or y - 4 = 0:
- y - 5 = 0 => y = 5
- y - 4 = 0 => y = 4
Now, we need to substitute back for y:
- x^2 = 5 => x = ±√5
- x^2 = 4 => x = ±2
Therefore, the real solutions to the equation are x = √5, x = -√5, x = 2, and x = -2.
I will now solve the remaining two equations:
- 16y^4 + 145y^2 + 9 = 0
Let's use substitution again. Let z = y^2. Then the equation becomes:
16z^2 + 145z + 9 = 0
Now, we can factor this quadratic equation:
(4z + 1)(4z + 9) = 0
So, either 4z + 1 = 0 or 4z + 9 = 0:
- 4z + 1 = 0 => 4z = -1 => z = -1/4
- 4z + 9 = 0 => 4z = -9 => z = -9/4
Now, we need to substitute back for z:
- y^2 = -1/4 (No real solutions, as the square of a real number cannot be negative)
- y^2 = -9/4 (No real solutions, as the square of a real number cannot be negative)
Therefore, there are no real solutions to the equation.
- 12y^4 - 7y^2 + 1 = 0
Let's use substitution again. Let z = y^2. Then the equation becomes:
12z^2 - 7z + 1 = 0
Now, we can factor this quadratic equation:
(3z - 1)(4z - 1) = 0
So, either 3z - 1 = 0 or 4z - 1 = 0:
- 3z - 1 = 0 => 3z = 1 => z = 1/3
- 4z - 1 = 0 => 4z = 1 => z = 1/4
Now, we need to substitute back for z:
- y^2 = 1/3 => y = ±√(1/3)
- y^2 = 1/4 => y = ±1/2
Therefore, the real solutions to the equation are y = √(1/3), y = -√(1/3), y = 1/2, and y = -1/2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili