Вопрос задан 26.06.2023 в 08:12. Предмет Алгебра. Спрашивает Новичкова Валентина.

X+y=42 2xy=42помогиие пжлст люди​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Корнев Алексей.

Ответ:

Объяснение:

{х+у=42

{2ху=42⇒ху=21

х=42-у

(42-у)у=21

42у-у²-21=0

у²-42у+21=0

у₁₂=21±√441-21=21±√420

у₁=21+√420

у₂=21-√420

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

У вас есть система уравнений:

  1. x + y = 42
  2. 2xy = 42

Чтобы решить эту систему уравнений, мы можем воспользоваться методом подстановки. Давайте начнем с выразить одну из переменных через другую из уравнения (1), а затем подставим это выражение в уравнение (2).

Из уравнения (1) мы можем выразить, например, x:

x = 42 - y

Теперь подставим это выражение в уравнение (2):

2(42 - y)y = 42

Распределите 2 умножить на оба члена:

84 - 2y^2 = 42

Теперь выразим y^2:

2y^2 = 84 - 42 2y^2 = 42

Разделим оба члена на 2:

y^2 = 21

Теперь возьмем квадратный корень обоих сторон:

y = ±√21

Теперь у нас есть два возможных значения для y: y = √21 и y = -√21. Далее мы можем подставить каждое из этих значений обратно в уравнение (1), чтобы найти соответствующие значения для x:

Для y = √21: x = 42 - √21

Для y = -√21: x = 42 + √21

Итак, у вас есть две пары значений (x, y), которые удовлетворяют вашей системе уравнений:

  1. x = 42 - √21, y = √21
  2. x = 42 + √21, y = -√21
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос