Вопрос задан 24.06.2023 в 17:05. Предмет Алгебра. Спрашивает Сатыбаев Нурдаулет.

Знайдіть суму перших чотирьох чисел геометричної прогресії, якщо b1= корень2, b5=4кореня із 2,

q<0
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сыскова Анастасия.

Ответ:

решение смотри на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження суми перших чотирьох чисел геометричної прогресії, нам потрібно визначити значення першого члена (b₁), спільного знаменника (q) і використовувати формулу для суми перших n членів геометричної прогресії:

S₄ = b₁ + b₁q + b₁q² + b₁q³

Дано: b₁ = корінь з 2 (sqrt(2)) b₅ = 4 * корінь з 2 (4 * sqrt(2)) q < 0

Ми можемо використовувати інформацію про b₅ та b₁, щоб знайти q:

b₅ = b₁ * q⁴ 4 * sqrt(2) = sqrt(2) * q⁴

Тепер знайдемо q:

q⁴ = (4 * sqrt(2)) / sqrt(2) q⁴ = 4

q = ±2

Згідно з умовою q < 0, отже q = -2.

Тепер ми можемо знайти суму перших чотирьох членів геометричної прогресії:

S₄ = sqrt(2) + sqrt(2) * (-2) + sqrt(2) * (-2)² + sqrt(2) * (-2)³

S₄ = sqrt(2) - 2sqrt(2) + 4sqrt(2) - 8sqrt(2)

S₄ = (1 - 2 + 4 - 8) * sqrt(2)

S₄ = -5 * sqrt(2)

Отже, сума перших чотирьох чисел геометричної прогресії дорівнює -5 * sqrt(2).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос