
√3 sin x — cos x = 0


Ответы на вопрос

Ответ:
π/6
Объяснение:



To solve the equation √3 sin(x) - cos(x) = 0, you can use trigonometric identities and algebraic manipulations. Here's how you can do it:
Start by dividing both sides of the equation by √3 to simplify it:
sin(x) - (1/√3) cos(x) = 0
Now, use the identity sin(π/6) = 1/2 and cos(π/6) = √3/2, which are values of the sine and cosine functions at 30 degrees:
sin(π/6) = 1/2 cos(π/6) = √3/2
Multiply both sides of the equation by 2 to eliminate the fractions:
2sin(x) - 2(1/√3)cos(x) = 0
Now, rewrite the equation using these values:
2sin(x) - (2/√3)cos(x) = 0
Use the sum-to-product trigonometric identity for sin(a)cos(b):
2sin(x) - (2/√3)cos(x) = 2sin(x) - 2sin(π/6)cos(x) - 2cos(π/6)sin(x) = 0
Combine like terms:
2sin(x) - (2/√3)cos(x) - (2/√3)cos(x) = 0
Factor out sin(x) from the first two terms:
2sin(x)(1 - 1/√3) - (2/√3)cos(x) = 0
Now, solve for sin(x):
2sin(x)(1 - 1/√3) = (2/√3)cos(x)
Divide both sides by 2(1 - 1/√3):
sin(x) = (2/√3)cos(x) / [2(1 - 1/√3)]
Now, use the fact that sin(x) = cos(π/2 - x) and cos(x) = sin(π/2 - x):
sin(x) = cos(π/2 - x) sin(x) = sin(π/2 - x)
- Set the angles equal to each other:
x = π/2 - x
- Solve for x:
2x = π/2
x = π/4
So, the solution to the equation √3 sin(x) - cos(x) = 0 is x = π/4.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili