Вопрос задан 21.06.2023 в 23:58. Предмет Алгебра. Спрашивает Видюлин Артём.

Помогите пж срочно. Сократите дробь x²+4x+ax+4a/a²+2ax+x²

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Подойникова Мария.

Ответ:

(х+4)/(х+а)

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам с этим.

Давайте разложим числитель и знаменатель на множители:

Числитель: x2+4x+ax+4a=x(x+4)+a(x+4)=(x+a)(x+4)x^2 + 4x + ax + 4a = x(x + 4) + a(x + 4) = (x + a)(x + 4).

Знаменатель: a2+2ax+x2=(a+x)2a^2 + 2ax + x^2 = (a + x)^2.

Теперь мы видим, что нам нужно сократить дробь:

x2+4x+ax+4aa2+2ax+x2=(x+a)(x+4)(a+x)2\frac{x^2 + 4x + ax + 4a}{a^2 + 2ax + x^2} = \frac{(x + a)(x + 4)}{(a + x)^2}.

Таким образом, сокращенная дробь равна x+aa+x\frac{x + a}{a + x}.

Обратите внимание, что aa и xx не могут быть равными нулю, так как это приведет к делению на ноль.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос