
Реши двойное неравенство 6<2x−10≤36. В каких пределах находится x?.Напиши ответ в виде
интервала:x∈

Ответы на вопрос

Ответ:
ответ на фото
Объяснение:




Для того чтобы решить двойное неравенство 6 < 2x - 10 ≤ 36, мы сначала решим два неравенства по отдельности, а затем найдем их пересечение.
1. Начнем с первого неравенства: 6 < 2x - 10. Добавим 10 к обеим сторонам неравенства: 6 + 10 < 2x. 16 < 2x.
Теперь разделим обе стороны на 2, чтобы изолировать x: 16/2 < 2x/2. 8 < x.
2. Теперь рассмотрим второе неравенство: 2x - 10 ≤ 36.
Добавим 10 к обеим сторонам неравенства: 2x - 10 + 10 ≤ 36 + 10. 2x ≤ 46.
Теперь разделим обе стороны на 2, чтобы изолировать x: (2x)/2 ≤ 46/2. x ≤ 23.
Теперь у нас есть два неравенства: 1. 8 < x 2. x ≤ 23
Чтобы найти пересечение этих двух интервалов, найдем общий интервал. Это будет интервал значений x, который удовлетворяет обоим неравенствам одновременно.
Интервал из первого неравенства: x > 8 (x находится справа от 8 на числовой прямой). Интервал из второго неравенства: x ≤ 23 (x находится слева от 23 на числовой прямой).
Общий интервал будет от 8 до 23 включительно.
Таким образом, x находится в интервале: x ∈ [8, 23]


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili