
Упростите выражение (5x-6)/(5-x)+(3x+16)/(x-5)


Ответы на вопрос

Ответ:
Объяснение:
делаем так умножаем на -1 1 слагаемое верхнею и нижнюю часть
получаем (6-5X)/(X-5) +(3X+16)/(x-5) т.к. знаменатель теперь одинаков
складываем верхнюю часть 6-5x+3x+16=22-2x получаем
(22-2x)/(x-5)



Для упрощения данного выражения, мы можем применить общий знаменатель и выполнить операции с дробями.
Сначала найдем общий знаменатель для данных двух дробей, который равен (5 - x)(x - 5): (5x - 6)/(5 - x) + (3x + 16)/(x - 5) = [(5x - 6)(x - 5) + (3x + 16)(5 - x)] / [(5 - x)(x - 5)]
Теперь упростим числитель: (5x - 6)(x - 5) + (3x + 16)(5 - x) = (5x^2 - 25x - 6x + 30) + (15 - 3x + 80 - 16x) = 5x^2 - 25x - 6x + 30 + 15 - 3x + 80 - 16x = 5x^2 - 50x + 125
Теперь подставим упрощенный числитель и общий знаменатель: [(5x^2 - 50x + 125)] / [(5 - x)(x - 5)]
Таким образом, упрощенное выражение равно (5x^2 - 50x + 125) / (5 - x)(x - 5).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili