
Не виконуючи побудови , знайдіть точки перетину графіка квадратичної функції з осями координат:
1) y=x²+4x+5;

Ответы на вопрос

Ответ:фото
Объяснение:
може ти там не дописала




Для того чтобы найти точки перетину графіка квадратичної функції з осями координат, ми повинні знайти значення x, при яких y дорівнює нулю. Тобто, ми шукаємо значення x, коли графік перетинає ось ординат (ось y).
У даному випадку, ми маємо квадратичну функцію у вигляді y = x² + 4x + 5. Щоб знайти точки перетину з осьовими лініями, ми можемо встановити y рівним нулю і вирішити рівняння для x.
Знаходження точок перетину з осьовими лініями
1) Перетин з осьовою лінією y: Прирівняємо y до нуля: 0 = x² + 4x + 5
Щоб вирішити це квадратне рівняння, ми можемо скористатися квадратними формулами або завершенням квадрату. Використаємо квадратні формули: x = (-b ± √(b² - 4ac)) / (2a)
В нашому випадку: a = 1, b = 4, c = 5
Підставимо ці значення в формулу: x = (-4 ± √(4² - 4 * 1 * 5)) / (2 * 1)
x = (-4 ± √(16 - 20)) / 2
x = (-4 ± √(-4)) / 2
Оскільки у нас є корінь квадратний з від'ємного числа, то точок перетину з осьовими лініями у даному випадку немає.
Таким чином, графік квадратичної функції y = x² + 4x + 5 не перетинає осі координат.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili