Вопрос задан 17.06.2023 в 14:21. Предмет Алгебра. Спрашивает Степанова Александра.

Решите уравнение X²-3x-10=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Небаба Ира.

Ответ:

х= -2 или 5

Объяснение:

х²-3х-10=0

х²+2х-5х-10=0

х(х+2)-5(х+2)=0

(х+2)(х-5)=0

х+2=0 или х-5=0

х=0-2=-2 или х=0+5=5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного квадратного уравнения, мы можем использовать методы факторизации, завершения квадрата или формулу квадратного корня. Давайте решим его с помощью формулы квадратного корня.

Уравнение: X² - 3x - 10 = 0

Для начала, давайте найдем дискриминант (D) уравнения. Дискриминант вычисляется по формуле D = b² - 4ac, где a, b и c - коэффициенты уравнения.

В нашем случае, a = 1, b = -3 и c = -10. Подставим эти значения в формулу дискриминанта:

D = (-3)² - 4 * 1 * (-10) = 9 + 40 = 49

Теперь, если дискриминант D больше нуля (D > 0), то уравнение имеет два различных рациональных корня. Если D равен нулю (D = 0), то уравнение имеет один рациональный корень. Если D меньше нуля (D < 0), то уравнение не имеет рациональных корней.

В нашем случае, D = 49, что больше нуля. Значит, у нас есть два различных рациональных корня.

Формула квадратного корня гласит: X = (-b ± √D) / (2a)

Подставим значения коэффициентов и дискриминанта в формулу:

X = (-(-3) ± √49) / (2 * 1) = (3 ± 7) / 2

Теперь решим два случая, используя знаки "+" и "-":

1. X = (3 + 7) / 2 X = 10 / 2 X = 5

2. X = (3 - 7) / 2 X = -4 / 2 X = -2

Итак, уравнение X² - 3x - 10 = 0 имеет два рациональных корня: X = 5 и X = -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос