Вопрос задан 17.06.2023 в 09:06. Предмет Алгебра. Спрашивает Копыткина Надежда.

Найдите градусную и радианную меры углов: Равнобедренного треугольника , два угла которого

относятся как 1 : 2.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соловьев Егор.

Ответ:

В равнобедренном треугольнике 2 угла при основании равны. Обозначим пропорции как х и . Пусть меньший угол треугольника=х, тогда больший угол=2х. Так как треугольник равнобедренный, то нужно добавить ещё один угол либо х либо 2х, и зная что сумма углов треугольника равна 180°, получим 2 разных уравнения.

1 ВАРИАНТ: когда 2 меньших угла равны

х+х+2х=180°

4х=180

х=180÷4

х=45° это меньший угол, тогда больший угол равен 45×2=90°

Искомые углы 45° и 90°

Радианная мера углов: 45°=π/4, 90°=π/2

2 ВАРИАНТ: если 2 больших угла равны

2х+2х+х=180

5х=180

х=180÷5

х=36° меньший угол,

тогда больший угол равен 36×2=72°

Углы 36° и 72°

π=180°, тогда =π/180, тогда радианная мера этих углов равна:

36°=36°×π/180=36π/180=π/5

72°=2×π/5=2π/5

ОТВЕТ: 1) 45°=π/4; 90°=π/2;

2) 36°=π/5; 72°=2π/5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть углы равнобедренного треугольника обозначены как A, B и C. По условию известно, что углы A и B относятся как 1:2.

Пусть мера угла A равна x градусов. Тогда мера угла B будет равна 2x градусов.

Так как сумма углов треугольника равна 180 градусов, то A + B + C = 180.

Подставляя значения углов A и B, получаем: x + 2x + C = 180 3x + C = 180

Также, по определению, радианная мера угла равна отношению длины дуги окружности, описанной вокруг этого угла, к радиусу окружности. Величина радианной меры угла равна отношению длины дуги к радиусу.

Так как радиус окружности равен половине длины основания равнобедренного треугольника, то радиус равен (180 - 2x) / 2 = 90 - x.

Тогда радианная мера угла A будет равна x / (90 - x) радиан, а радианная мера угла B будет равна (2x) / (90 - x) радиан.

Таким образом, градусная мера углов равнобедренного треугольника определяется как x и 2x градусов, а радианная мера углов определяется как x / (90 - x) и (2x) / (90 - x) радиан.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос