Вопрос задан 17.06.2023 в 08:54. Предмет Алгебра. Спрашивает Косюр Маряна.

45 БАЛЛ. Два Оператора за 6часов и 40минут наберут страницу а если отдельно то Первый оператор за

всю работу потратить меньше чем 3часа Сколько им обоим нужно времени чтоб закончить?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.

Ответ:

9 часов и 40 минут думаю так

0 0
Отвечает Зиянгирова Динара.

Ответ:

40-6=34

34-6=28

28÷3=9

34+6=40

ответ:

часов и 40 минут

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two operators who can complete a page of work together in 6 hours and 40 minutes. However, if they work separately, the first operator can complete the entire task in less than 3 hours. We need to determine how much time it would take for both operators to complete the task if they work together.

Solution

Let's break down the problem step by step:

1. Convert 6 hours and 40 minutes to a decimal form: - 6 hours = 6 * 60 = 360 minutes - 40 minutes = 40 minutes - Total time = 360 minutes + 40 minutes = 400 minutes

2. Determine the rate at which the two operators work together: - If they can complete a page of work in 400 minutes, their combined work rate is 1 page / 400 minutes = 1/400 pages per minute.

3. Determine the rate at which the first operator works: - If the first operator can complete the entire task in less than 3 hours, their work rate is 1 page / (3 hours * 60 minutes) = 1/180 pages per minute.

4. Determine the rate at which the second operator works: - To find the second operator's work rate, we subtract the first operator's work rate from the combined work rate: - Second operator's work rate = Combined work rate - First operator's work rate - Second operator's work rate = (1/400) - (1/180) = 1/720 pages per minute.

5. Determine the time it would take for both operators to complete the task working together: - Let's assume the time it takes for both operators to complete the task is T minutes. - The first operator's work rate is 1/180 pages per minute, so the amount of work they can complete in T minutes is (1/180) * T pages. - The second operator's work rate is 1/720 pages per minute, so the amount of work they can complete in T minutes is (1/720) * T pages. - The total amount of work completed by both operators in T minutes is (1/180) * T + (1/720) * T pages. - Since they complete a page of work together in 400 minutes, the total amount of work completed by both operators in T minutes is also 1 page. - Therefore, we can set up the equation: (1/180) * T + (1/720) * T = 1.

6. Solve the equation to find the value of T: - Multiply both sides of the equation by 720 to eliminate the denominators: 4T + T = 720. - Simplify the equation: 5T = 720. - Divide both sides of the equation by 5: T = 720 / 5 = 144 minutes.

Answer

It would take both operators 144 minutes to complete the task if they work together.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос