Вопрос задан 16.06.2023 в 10:21. Предмет Алгебра. Спрашивает Матасова Женя.

Спростіть вираз 1) cos( 3π/2 + a) 2) cos(π-a) 3) sin(180°+a) 4)sin²(5π/2 + a)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Попов Вова.
Решение на фото.я сама в математике не очень разбираюсь

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте спростимо кожен вираз по черзі:

  1. cos(3π/2 + a): Спочатку знаходимо значення виразу 3π/2 + a. Якщо додамо π/2 до 3π/2, отримаємо 2π, тому вираз можна спростити до cos(2π + a). Оскільки cos(2π) = 1, вираз стає cos(a).

  2. cos(π - a): Цей вираз можна спростити до cos(π)cos(a) + sin(π)sin(a). Оскільки cos(π) = -1 і sin(π) = 0, вираз стає -cos(a).

  3. sin(180° + a): Аналогічно до попереднього виразу, ми можемо записати його як sin(180°)cos(a) + cos(180°)sin(a). Оскільки sin(180°) = 0 і cos(180°) = -1, вираз спрощується до -sin(a).

  4. sin²(5π/2 + a): Спочатку знаходимо значення виразу 5π/2 + a. Якщо додамо 2π до 5π/2, отримаємо 9π/2, тому вираз можна записати як sin²(9π/2 + a). Оскільки sin²(x) = (1 - cos(2x))/2, ми можемо застосувати цю формулу до нашого виразу: sin²(9π/2 + a) = (1 - cos(2(9π/2 + a)))/2 = (1 - cos(9π + 2a))/2. Оскільки cos(9π) = cos(2π + π) = cos(π) = -1, вираз спрощується до (1 - (-1))/2 = 1/2.

Ось спрощені вирази:

  1. cos(3π/2 + a) = cos(a)
  2. cos(π - a) = -cos(a)
  3. sin(180° + a) = -sin(a)
  4. sin²(5π/2 + a) = 1/2
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос