
Вопрос задан 15.06.2023 в 11:54.
Предмет Алгебра.
Спрашивает Хачатрян Лилит.
Який номер члена арифметичної прогресії (xn)що дорівнює 29,4, коли x1=10,2,d=0,4?


Ответы на вопрос

Отвечает Шалаева Елизавета.
Объяснение:
Ответ: n=49.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Щоб знайти номер члена арифметичної прогресії, використовуємо формулу:
n = (x - x1) / d + 1,
де n - номер члена, x - значення члена, x1 - перший член прогресії, d - різниця прогресії.
Підставляючи відповідні значення в формулу, отримуємо:
n = (29.4 - 10.2) / 0.4 + 1 = 19.2 / 0.4 + 1 = 48 + 1 = 49.
Тому 29.4 є 49-м членом арифметичної прогресії з першим членом 10.2 і різницею 0.4.


Похожие вопросы

Алгебра 1
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili