
На плоскости дан отрезок АВ=12 см. Из его концов проведены два перпендикуляра длиной 9 см и 4 см.
Найти расстояние между концами этих перпендикуляров.

Ответы на вопрос

Ответ: 13 cm
Объяснение: в файле




Чтобы найти расстояние между концами перпендикуляров, мы можем использовать теорему Пифагора.
Обозначим длину первого перпендикуляра как AC, а длину второго перпендикуляра как BD. Из условия задачи, AC = 9 см и BD = 4 см.
Поскольку перпендикуляры проведены из концов отрезка AB, точки C и D будут лежать на отрезке AB. Давайте обозначим расстояние между точками C и D как CD.
Так как AC и BD являются перпендикулярными отрезками, мы можем использовать теорему Пифагора для нахождения расстояния CD:
CD^2 = AB^2 - AC^2 - BD^2
Подставляя известные значения, получаем:
CD^2 = 12^2 - 9^2 - 4^2 CD^2 = 144 - 81 - 16 CD^2 = 47
Теперь возьмем квадратный корень из обеих сторон уравнения:
CD = √47
Таким образом, расстояние между концами перпендикуляров CD равно примерно 6.855 см (округляя до трех десятичных знаков).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili