Вопрос задан 10.06.2023 в 02:26. Предмет Алгебра. Спрашивает Богданов Дмитрий.

X3+3x²-4x-12=0 разложить на множители​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Chernysh Kolya.

Решение на прикреплённой фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для разложения данного уравнения на множители, мы должны найти его рациональные корни, используя теорему о рациональных корнях (теорема о целых корнях).

Для начала, давайте проверим, есть ли целые корни этого уравнения, рассмотрев все делители свободного члена (-12) и всех коэффициентов перед переменными (1, 3, -4).

Возможные делители числа -12: ±1, ±2, ±3, ±4, ±6, ±12. Возможные делители числа 1: ±1. Таким образом, возможные рациональные корни уравнения могут быть: ±1, ±2, ±3, ±4, ±6, ±12.

Применяя эти значения в уравнении и проверяя, являются ли они корнями, мы можем найти рациональные корни и разложить уравнение на множители.

Подставим x = 1: 1³ + 3(1)² - 4(1) - 12 = 1 + 3 - 4 - 12 = -12 Корень x = 1 не является рациональным корнем.

Подставим x = -1: (-1)³ + 3(-1)² - 4(-1) - 12 = -1 + 3 + 4 - 12 = -6 Корень x = -1 также не является рациональным корнем.

Подставим x = 2: 2³ + 3(2)² - 4(2) - 12 = 8 + 12 - 8 - 12 = 0 Корень x = 2 является рациональным корнем.

Теперь, когда мы нашли один рациональный корень x = 2, мы можем разделить исходное уравнение на (x - 2), используя синтетическое деление или деление полиномов.

(x³ + 3x² - 4x - 12) / (x - 2) = x² + 5x + 6

Таким образом, исходное уравнение X³ + 3x² - 4x - 12 = 0 можно разложить на множители следующим образом: (x - 2)(x² + 5x + 6) = 0.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос