
36a²-64c²= 1-a⁴c²= -25c²+9a²=


Ответы на вопрос

(a²-b²)=(a-b)(a+b)
36a²-64c²=(6à)²-(8c)²=(6a-8c)(6a+8c)
1-a⁴c²=(1)²-(a²c)²=(1-a²c)(1+a²c)
-25c²+9a²=9a²-25c²=(3a)²-(5c)²=(3a-5c)(3a+5c)



To solve the given system of equations:
- 36a² - 64c² = 1
- 1 - a⁴c² = 0
- -25c² + 9a² = 0
Let's solve them step by step:
From equation (1), we can rewrite it as:
36a² = 64c² + 1
Divide both sides by 36:
a² = (64c² + 1)/36
Now, let's substitute this expression for a² in equations (2) and (3):
- 1 - [(64c² + 1)/36] * c² = 0
Multiply both sides by 36 to eliminate the denominator:
36 - (64c² + 1) * c² = 0
Expand the expression:
36 - 64c⁴ - c² = 0
Rearrange the terms:
64c⁴ + c² - 36 = 0
- -25c² + 9[(64c² + 1)/36] = 0
Multiply both sides by 36 to eliminate the denominator:
-25 * 36c² + 9(64c² + 1) = 0
Simplify:
-900c² + 576c² + 9 = 0
Combine like terms:
-324c² + 9 = 0
Now, we have two equations:
- 64c⁴ + c² - 36 = 0
- -324c² + 9 = 0
Let's solve equation (2) first:
-324c² + 9 = 0
Adding 324c² to both sides:
9 = 324c²
Divide both sides by 324:
c² = 9/324
Simplify:
c² = 1/36
Taking the square root of both sides:
c = ± 1/6
Now, substitute the values of c into equation (1) to find the corresponding values of a:
For c = 1/6:
36a² = 64(1/6)² + 1 36a² = 64/36 + 1 36a² = 64/36 + 36/36 36a² = 100/36 a² = 100/36 a = ± √(100/36) a = ± (10/6) a = ± 5/3
For c = -1/6:
36a² = 64(-1/6)² + 1 36a² = 64/36 + 1 36a² = 64/36 + 36/36 36a² = 100/36 a² = 100/36 a = ± √(100/36) a = ± (10/6) a = ± 5/3
Therefore, the solutions to the system of equations are:
a = 5/3, c = 1/6 a = -5/3, c = 1/6 a = 5/3, c = -1/6 a = -5/3, c = -1/6


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili