Вопрос задан 05.06.2023 в 11:05. Предмет Алгебра. Спрашивает Поляков Данила.

Найдите наименьший положительный период функции у = sinx + cosx

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сокіл Руслан.
y=sinx+cosx=sinx+sin(\frac{\pi}{2}-x)=2sin\frac{x+\frac{\pi}{2}-x}{2}\cdot cos\frac{x-\frac{\pi}{2}+x}{2}=\\\\=2sin\frac{\pi}{4}\cdot cos(x-\frac{\pi}{4})=\sqrt2\cdot cos(x-\frac{\pi}{4})

Коэффициент при переменной х в аргументе косинуса = 1, поэтому наименьши положительный период заданной функции будет  таким же , как был у функции y=cosx, то есть Т= 2\pi .
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Функция у = sin(x) + cos(x) является периодической с периодом 2π. Это можно увидеть, заметив, что оба синус и косинус имеют период 2π, и когда их суммируют, результат остается периодическим с таким же периодом.

Таким образом, наименьший положительный период функции у = sin(x) + cos(x) составляет 2π.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос