
3x^2 ≥ | x^2+2x | + 12


Ответы на вопрос

D = 25
x = 3
x = -2
D = 49
x = 3/2 - не принадлежит области определения
x = -2
Ответ: x = -2; x = 3



To solve the inequality 3x^2 ≥ |x^2 + 2x| + 12, we need to consider two cases: when x^2 + 2x is positive and when it is negative.
Case 1: x^2 + 2x ≥ 0 In this case, the absolute value simplifies to x^2 + 2x. So the inequality becomes: 3x^2 ≥ x^2 + 2x + 12
Simplifying further, we have: 2x^2 - 2x - 12 ≥ 0
Next, we solve the quadratic equation by factoring or using the quadratic formula: 2x^2 - 2x - 12 = 0
Factoring out a 2, we get: 2(x^2 - x - 6) = 0
Now, factor the quadratic equation: 2(x - 3)(x + 2) = 0
Setting each factor equal to zero, we have: x - 3 = 0 => x = 3 x + 2 = 0 => x = -2
So in this case, the solutions are x = 3 and x = -2.
Case 2: x^2 + 2x < 0 In this case, the absolute value simplifies to -(x^2 + 2x). So the inequality becomes: 3x^2 ≥ -(x^2 + 2x) + 12
Simplifying further, we have: 3x^2 ≥ -x^2 - 2x + 12
Combining like terms, we get: 4x^2 + 2x - 12 ≥ 0
Now, we solve the quadratic equation by factoring or using the quadratic formula: 4x^2 + 2x - 12 = 0
Dividing the equation by 2, we have: 2x^2 + x - 6 = 0
Factoring the quadratic equation, we get: (2x - 3)(x + 2) = 0
Setting each factor equal to zero, we have: 2x - 3 = 0 => x = 3/2 x + 2 = 0 => x = -2
So in this case, the solutions are x = 3/2 and x = -2.
In conclusion, the solutions to the original inequality 3x^2 ≥ |x^2 + 2x| + 12 are x = 3, x = -2, x = 3/2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili