Вопрос задан 02.06.2023 в 17:43. Предмет Алгебра. Спрашивает Пуздря Ксения.

Найдите наименьшее и наибольшее значение функции y=x/3+3/x на отрезке [-5;1]

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Плетнёва Аля.

Ответ:

y=\dfrac{x}{3}+\dfrac{3}{x}\ \ ,\ \ \ x\in [-5\ ;\ 1\ ]\\\\\\y'=\dfrac{1}{3}-\dfrac{3}{x^2}=\dfrac{x^2-3}{3x^2}=0\ \ ,\ \ \ x^2-3=0\ \ ,\ \ x=\pm \sqrt3\ \ ,\ \ x\ne 0\\\\\\x=\sqrt3\approx 1,7\notin [-5\ ;\ 1\ ]\\\\\\y(-5)=\dfrac{-5}{3}-\dfrac{3}{5}=-\dfrac{34}{15}=-2\dfrac{4}{15}\approx -2,27\\\\y(-\sqrt3)=\dfrac{-\sqrt3}{3}+\dfrac{3}{-\sqrt3}=\dfrac{-\sqrt3-3\sqrt3}{3}=-\dfrac{4\, \sqrt3}{3}\approx -2,31\\\\y(1)=\dfrac{1}{3}+\dfrac{3}{1}=3\dfrac{1}{3}

y(naimen.)=y(-\sqrt3)=-\dfrac{4\sqrt3}{3}\ \ ,\ \ \ y(naibol.)=y(1)=3\dfrac{1}{3}

1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наименьшее и наибольшее значение функции y = x/3 + 3/x на отрезке [-5; 1], нужно проанализировать функцию на этом отрезке. Для начала, вычислим значения функции при граничных точках отрезка:

y(-5) = (-5)/3 + 3/(-5) = -5/3 - 3/5 = -25/15 - 9/15 = -34/15 y(1) = (1)/3 + 3/(1) = 1/3 + 3 = 10/3

Теперь проанализируем значения функции на промежутке между -5 и 1. Возьмем производную функции и найдем критические точки:

y'(x) = 1/3 - 3/(x^2)

Чтобы найти критические точки, приравняем производную к нулю:

1/3 - 3/(x^2) = 0

Умножим обе стороны на 3(x^2), чтобы избавиться от знаменателя:

(x^2) - 9 = 0

(x^2) = 9

x = ±3

Таким образом, критические точки функции на отрезке [-5; 1] -3 и 3.

Вычислим значения функции в этих точках:

y(-3) = (-3)/3 + 3/(-3) = -1 + (-1) = -2 y(3) = (3)/3 + 3/(3) = 1 + 1 = 2

Итак, наименьшее значение функции на отрезке [-5; 1] равно -2, а наибольшее значение равно 10/3 или около 3.33.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос